Abstract

Characterization of Electrospinning Parameters of Chitosan/Poly(vinyl alcohol) Nanofibers to Remove Phenol via Response Surface Methodology

Fabrication and characterization of chitosan/PVA electrospun nanofibers for adsorption of phenol from water was investigated. The effects of voltage (15-30 kv), solution injection flow rate (0.5-1.5 mL-1 h), distance of needle and collector (10-20 cm) and chitosan/poly(vinyl alcohol) volumetric ratio (25/75, 50/50, 75/25) were studied to obtain the optimum electrospinning conditions for the maximum adsorption capacity of phenol. Central composite design (CCD) from statgraphics software was used to investigate and optimize the processing factors for production of chitosan/poly(vinyl alcohol) nanofibers from aqueous solutions. The nanofibers were characterized using SEM, FTIR, XRD and TGA. Uniform beadless nanofibers with the minimum diameters of 3-11 nm and 6-18 nm were obtained before and after crosslinking process respectively. The optimum parameters of electrospinning for maximum phenol adsorption achieved at chitosan/PVA ratio of 50/50, voltage of 30 kV, distance of 20 cm, and injection flow rate of 1.48 mL h-1. FTIR spectrum of chitosan/PVA exhibited the existence of relevant functional groups of both PVA, chitosan in the blends. XRD pattern that both chitosan and PVA are crystalline in nature and show sharp peaks corresponding to 2θ=20° and 41.68. TGA analysis shows that destruction temperature of adsorbent is about 200°C.


Author(s):

Abdolmaleki AY, Zilouei H and Khorasani SN



Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+

Recommended Conferences

Flyer image

Abstracted/Indexed in

  • Index Copernicus
  • Directory of Research Journal Indexing (DRJI)
  • WorldCat